Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Spectr ; 11(1): e0279622, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2213891

ABSTRACT

The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/µL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/µL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue Virus/classification , Dengue Virus/isolation & purification , Rapid Diagnostic Tests , Recombinases , Sensitivity and Specificity , Serogroup
2.
Diagn Microbiol Infect Dis ; 101(4): 115517, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1347571

ABSTRACT

Dengue and COVID-19 cocirculation presents a diagnostic conundrum for physicians evaluating patients with acute febrile illnesses, both in endemic regions and among returning travelers. We present a case of a returning traveler from Pakistan who, following repeated negative SARS-CoV-2 tests, was found to have a Dengue virus serotype 2 infection.


Subject(s)
COVID-19/diagnosis , Dengue/diagnosis , SARS-CoV-2 , Adult , COVID-19/epidemiology , California/epidemiology , Dengue/epidemiology , Dengue Virus/classification , Dengue Virus/genetics , Female , Genome, Viral , Humans , Pakistan/epidemiology , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Serogroup , Travel
3.
J Med Virol ; 93(11): 6073-6076, 2021 11.
Article in English | MEDLINE | ID: covidwho-1318724

ABSTRACT

The Cook Island government has made several efforts to ensure zero confirmed cases and transmission of COVID-19, especially among visiting travelers. However, the Cook Island ministry of health has to deal with the new strain of dengue fever outbreak, known as dengue fever type 2 (DEN-2), by adopting several measures to control its spread, especially in the affected parts of the subtropical country. This paper aims to describe the dengue fever response taken in Cook Island and suggest recommendations to control the risk of transmission in endemic parts of the world.


Subject(s)
Dengue/epidemiology , Disease Outbreaks , COVID-19/diagnosis , COVID-19/epidemiology , Dengue/diagnosis , Dengue/prevention & control , Dengue/virology , Dengue Virus/classification , Endemic Diseases , Humans , Mosquito Control , Polynesia/epidemiology , Serogroup
4.
Am J Trop Med Hyg ; 104(2): 487-489, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-1175672

ABSTRACT

We report a 50-year-old Thai woman with recent travel to Denmark who presented with acute high-grade fever, vomiting, and myalgia for 1 day. Initial laboratory results revealed leukopenia, elevated aspartate transaminase, and elevated alanine transaminase. Chest radiograph showed no pulmonary infiltration. Reverse transcriptase-PCR (RT-PCR) of the nasopharyngeal swab detected SARS-CoV-2, and RT-PCR of the blood detected dengue virus serotype 2. COVID-19 with dengue fever co-infection was diagnosed. Her symptoms were improved with supportive treatment. Integration of clinical manifestations, history of exposure, laboratory profiles, and dynamic of disease progression assisted the physicians in precise diagnosis. Co-circulating and nonspecific presentations of dengue infection and COVID-19 challenge the healthcare system in tropical countries. To solve this threat, multi-sector strategies are required, including public health policy, development of accurate point-of-care testing, and proper prevention for both diseases.


Subject(s)
COVID-19/diagnosis , Coinfection/diagnosis , Coinfection/virology , Dengue/diagnosis , Travel , Dengue Virus/classification , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Humans , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Serogroup , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL